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We considered the most general coupled oscillator problem – 𝑁 particles in three 
dimensions coupled to each other by means of springs or any other types of forces that 
produce a stable equilibrium configuration.  This system has 𝑛 generalized (perhaps normal) 
coordinates, where in general 𝑛 ≤ 3𝑁.  The generalized coordinates are written as 𝑞⃗ =
(𝑞1,𝑞2, … 𝑞𝑛).  We assume that only conservative forces act between the particles, hence (as 
known from previous studies) the potential energy is a function only of the coordinates: 
𝑈 = 𝑈(𝑞⃗).  The kinetic energy is that of all of the particles in the system: 𝑇 = 1

2
∑ 𝑚𝛼𝑟̇𝛼2𝑁
𝛼=1 .  

The “raw” coordinates 𝑟𝛼can be written in terms of the generalized coordinates as 𝑟𝛼 =
𝑟𝛼(𝑞1, 𝑞2, … 𝑞𝑛), where it is assumed that no explicit time-dependence is required to write 
down this transformation.  The kinetic energy can be written as 𝑇 = 1

2
∑ ∑ 𝐴𝑖𝑖𝑛

𝑗=1 𝑞̇𝑖𝑞̇𝑗𝑛
𝑖=1 , 

where the matrix 𝐴̿ is defined as 𝐴𝑖𝑖 ≡ ∑ 𝑚𝛼
𝜕𝑟𝛼
𝜕𝑞𝑖

∙ 𝜕𝑟𝛼
𝜕𝑞𝑗

𝑁
𝛼=1 .  Note that the double pendulum 

kinetic energy (see the Lagrangian in the last lecture) has a kinetic energy of this form, 
including a 𝑞̇1𝑞̇2 term.  Note that the matrix 𝐴̿ is a function of the generalized coordinates as 
well: 𝐴̿ = 𝐴̿(𝑞⃗).  We now have the full Lagrangian of this generalized coupled oscillator 
problem ℒ = 𝑇�𝑞⃗, 𝑞̇⃗� − 𝑈(𝑞⃗).   

To make further progress we next considered the small oscillation motion of the system 
around a stable equilibrium point.  This means that we will keep terms only up to second 
order in the variables.  By a shift of the origin, we can make the stable equilibrium point 
appear at the point 𝑞⃗ = (0, 0, … 0).  We then did a Taylor series expansion of the potential 
around this point and kept terms up to second order, yielding 𝑈(𝑞⃗) = 1

2
∑ 𝐾𝑖𝑖𝑞𝑖𝑞𝑗𝑖,𝑗 , where 

the matrix elements of 𝐾� are the curvatures of the potential with respect to the generalized 

coordinates: 𝐾𝑖𝑖 ≡
𝜕2𝑈

𝜕𝑞𝑖𝜕𝑞𝑗
�
𝑞�⃗ =0

.  The kinetic energy is already quadratic in the variables, so we 

simply evaluate it at 𝑞⃗ = 0 to yield  𝑇 = 1
2
∑ 𝐴𝑖𝑖(0)𝑞̇𝑖𝑞̇𝑗𝑖,𝑗 = 1

2
∑ 𝑀𝑖𝑖𝑞̇𝑖𝑞̇𝑗𝑖,𝑗 , where the mass 

matrix 𝑀�  is the 𝐴̿ matrix evaluated at the equilibrium position 𝑞⃗ = (0, 0, … 0).  The 
Lagrangian ℒ = 𝑇�𝑞̇⃗� − 𝑈(𝑞⃗) is now a homogeneous quadratic function of the coordinates 
and their time-derivatives, and the matrices 𝑀�  and 𝐾� are constant symmetric real matrices.   

There are 𝑛 Lagrange equations to set up and solve.  We wrote down the equations and 
found that the set of 𝑛 equations are summarized beautifully in a simple matrix equation: 
−𝐾�𝑞⃗ = 𝑀�𝑞̈⃗.  We can solve this equation using the same method employed before, just 
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generalized to  𝑛 coordinates.  We use the standard complex ansatz for the solution vector: 

𝑞⃗(𝑡) = 𝑅𝑅�𝐶𝑒𝑖𝑖𝑖�, where 𝐶 = �

𝐶1
𝐶2
⋮
𝐶𝑛

�, and the 𝐶𝑖 are complex constants.  This assumes that 

all of the coordinates adopt the same oscillation frequency 𝜔, and each oscillator will adopt 
its own amplitude and phase (through the choice of 𝐶𝑖 = 𝐴𝑖𝑒−𝑖𝛿𝑖).  Putting this into the 
matrix equation yields �𝐾� − 𝜔2𝑀��𝐶 = 0.  To get a non-trivial solution for 𝐶, we demand 
that 𝑑𝑑𝑑�𝐾� − 𝜔2𝑀�� = 0.  This yields an 𝑛-th order equation for 𝜔2, with 𝑛 real solutions 
(we know this because the matrix 𝐾� − 𝜔2𝑀� is real and symmetric).  The 𝑛 normal modes 
follow by standard linear algebra.  The most general solution is a linear combination of 
motion in all of the normal modes, each with distinct amplitude and phase.  The motion in a 
given normal mode may involve a coordinated motion of all the particles in the system!  The 
Kuramoto model describes a collection of coupled oscillators, each with a unique natural 
frequency and coupled to all other oscillators through a nonlinear coupling.  It describes the 
synchronization (or lack thereof) of generators making up the power grid, as well as the 
coordinated oscillations of fireflies in Tennessee, among other things. 

We then turned to a discussion of Special Relativity.  We began by reviewing the 
Galilean transformation between inertial reference frames, and showed that Newton’s second 
law of motion holds in the same form in all inertial reference frames.  This result relies on the 
Galilean velocity addition formula between reference frames.  However, it was discovered 
that Galilean invariance does not apply to Maxwell’s equations (which are actually Lorentz 
invariant) by examining the measurement of the speed of light in a moving reference frame.  
The Michelson-Morley experiment showed that the measured speed of light is the same in all 
directions for all inertial observers.  Hence there must be something more going on than 
simple Galilean transformations between reference frames. 

Einstein made two postulates: 

1)  If S is an inertial reference frame and if a second frame S’ moves with constant 
velocity relative to S, then S’ is also an inertial reference frame. 

2) The speed of light (in vacuum) has the same value c in every direction in all inertial 
reference frames. 

The first postulate points out that there is no “special” reference frame which is 
absolutely at rest and somehow ‘better’ than any other reference frame.  It also implies that all 
the laws of physics (including Maxwell’s equations) should take on the same form in all inertial 
reference frames.  Again it says that there is no single inertial reference frame in which the laws 
of physics are simpler, or have fewer terms, than any other reference frame.  The trick will be 
finding how to transform all of the coordinates from one inertial reference frame to another to 

https://www.youtube.com/watch?v=a-Vy7NZTGos


3 
 

preserve the form of the laws of physics.  The second postulate codifies the results of the 
Michelson-Morley experiment, and leads to many non-intuitive results. 

We examined the relativity of time by considering two reference frames, one with 
railroad tracks at rest (S), and the other (S’) on a train moving down the tracks at a high rate of 
speed (V).  Consider a light-clock on the train (frame S’) that sends a brief flash of light from the 
floor to the ceiling, where it bounces off of a mirror, and then back to a detector that is co-
located with the source on the floor.  The time interval for the round trip of the light beam is 
∆𝑡′ = 2ℎ/𝑐, where ℎ is the height of the train and 𝑐 is the speed of light, as measured in S’.  An 
observer (or really a set of observers) in S see the light follow a triangular trajectory as the train 
wizzes by.  From the geometry of the experiment, and the second postulate, those observers 
attribute a time interval for the “round trip” of   ∆𝑡 = 𝛾∆𝑡′, where 𝛾 = 1/�1 − 𝛽2, and 𝛽 = 𝑉/
𝑐.  Since 𝛾 > 1 the two observers do not agree on how much time elapsed on the light-clock!  
This shows that the Galilean idea of universal time for all inertial observers is incorrect.  In 
addition, because 𝛾 diverges as 𝑉 → 𝑐, it says that there is a speed limit for inertial reference 
frames: 𝑉 < 𝑐.  (This also means that we cannot address the question of what the world looks 
like from the reference frame of a photon travelling at the speed of light, at least with this 
formalism.) 

The first postulate implies the equality of all inertial reference frames, so why is the result 
∆𝑡 = 𝛾∆𝑡′ asymmetric between the two inertial reference frames?  The difference arises because 
the time interval was measured at a single fixed location in S’ while it was measured at two 
distinct locations in S.  The measurement of a time interval at a fixed location in an inertial 
reference frame is called the ‘proper time interval’ and is denoted ∆𝑡0.  Measurements of these 
two events taken from any other inertial reference frame moving with respect to this one will 
result in a dilated time interval measurement ∆𝑡 = 𝛾∆𝑡0. 

 

 

 


